Acting Rationally: The Rational Agent Approach

Acting rationally means acting so as to achieve one's goals, given one's beliefs. An agent is just something that perceives and acts. (This may be an unusual use of the word, but you will get used to it.) 

In this approach, AI is viewed as the study and construction of rational agents. In the "laws of thought" approach to AI, the whole emphasis was on correct inferences. Making correct inferences is sometimes part of being a rational agent, because one way to act rationally is to reason logically to the conclusion that a given action will achieve one's goals, and then to act on that conclusion. On the other hand, correct inference is not all of rationality, because there are often situations where there is no provably correct thing to do, yet something must still be done. 

There are also ways of acting rationally that cannot be reasonably said to involve inference. For example, pulling one's hand off of a hot stove is a reflex action that is more successful than a slower action taken after careful deliberation. All the "cognitive skills" needed for the Turing Test are there to allow rational actions. Thus, we need the ability to represent knowledge and reason with it because this enables us to reach good decisions in a wide variety of situations. We need to be able to generate comprehensible sentences in natural language because saying those sentences helps us get by in a complex society. 

We need learning not just for erudition, but because having a better idea of how the world works enables us to generate more effective strategies for dealing with it. We need visual perception not just because seeing is fun, but in order to get a better idea of what an action might achieve—for example, being able to see a tasty morsel helps one to move toward it. The study of AI as rational agent design therefore has two advantages. 

First, it is more general than the "laws of thought" approach, because correct inference is only a useful mechanism for achieving rationality, and not a necessary one. Second, it is more amenable to scientific development than approaches based on human behavior or human thought, because the standard of rationality is clearly defined and completely general. Human behavior, on the other hand, is well-adapted for one specific environment and is the product, in part, of a complicated and largely unknown evolutionary process that still may be far from achieving perfection. 

This book will therefore concentrate on general principles of rational agents, and on components for constructing them. We will see that despite the apparent simplicity with which the problem can be stated, an enormous variety of issues come up when we try to solve it. Chapter 2 outlines some of these issues in more detail. One important point to keep in mind: we will see before too long that achieving perfect rationality—always doing the right thing—is not possible in complicated environments. 

The computational demands are just too high. However, for most of the book, we will adopt the working hypothesis that understanding perfect decision making is a good place to start. It simplifies the problem and provides the appropriate setting for most of the foundational material in the field. Chapters 5 and 17 deal explicitly with the issue of limited rationality—acting appropriately when there is not enough time to do all the computations one might like.

No comments:

Powered by Blogger.